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SUMMARY 

This paper analyzes the influence of damper properties on the probabilistic seismic performance of 
building frames equipped with viscous dampers. In particular, a probabilistic methodology is 
employed to evaluate the influence of the damper nonlinearity, measured by the damper exponent, 
on the performance of structural and non-structural components of building frames, as described by 
the response hazard curves of the relevant engineering demand parameters.  
The performance variations due to changes in the damper nonlinearity level are evaluated and 
highlighted by considering two realistic design scenarios and by comparing the results of a set of  
cases involving dampers with different exponents designed to provide the same deterministic 
performance. By this way, it is possible to evaluate the influence of the nonlinear response and of 
its dispersion on the demand hazard. It is shown that the damper nonlinearity level strongly affects 
the seismic performance and different trends are observed for the demand parameters of interest. A 
comparison with code provisions shows that further investigation is necessary to provide more 
reliable design formulas accounting for the damping nonlinearity level. 
 

INTRODUCTION 

The extensive losses sustained by engineering systems during recent seismic events has highlighted 
the inadequacy of the seismic design based on the “life safety” or “collapse prevention” concept, 
and the need of controlling the seismic performance in terms of structural and non-structural 
damage at multiple hazard scenarios, as also suggested by recent Performance-Based Design (PBD) 
guidelines [1],[2],[3]. In this context, base isolation [4] or passive energy dissipation [5],[6] have 
emerged as effective technologies that permit to improve the seismic performance of new and 
existing buildings by significantly reducing the damage to both structural and non structural 
components.  
Among passive energy dissipation systems, fluid viscous dampers proved to have some 
performance advantages since they permit to reduce both displacements and accelerations 
simultaneously [7],[8]. This can be very significant for those structures (e.g., hospitals or electrical 
stations) whose contents and components are sensitive to deformations or accelerations. Another 
property of viscous dampers that makes them preferable to other types of damper is related to their 
velocity-dependent behaviour, which implies large energy dissipation also at small deformation 
levels . 
The response of viscous dampers is proportional to a power-law of the velocity and can be linear or 
nonlinear depending on the value of the velocity exponent , usually varying in the range between 
0.15 and 1 in structural engineering applications [9]. The earthquake response of building frames 
equipped with linear or nonlinear viscous dampers has been analyzed in many papers by using 
Single-Degree-Of-Freedom (SDOF) models [10],[11] as well as more complex structural models 
[8],[12][13]. In general, these studies observed that nonlinear viscous dampers permit to achieve the 
same displacement reduction as linear viscous dampers but with lower damper forces. Furthermore, 



in the nonlinear case the damper forces do not increase significantly for velocities increasing 
beyond the design value, thus avoiding potential overload in the dampers and in the system to 
which they are connected [14][15].  
Although all the above studies analyzed interesting aspects concerning the effectiveness of 
nonlinear viscous dampers in the design, they are all based on a “deterministic” measure of the 
seismic demand, i.e., they evaluate the seismic response by using a one-to-one relationship between 
the seismic intensity and a response parameters (usually coinciding with the mean response of a set 
of ground motions with a specific intensity level), and do not account for the response dispersion 
and the relevant effects on the structural reliability. The limits of this approach, currently employed 
in many seismic design guidelines [3],[16]-[18], have been highlighted in Bradley [19], who also 
stressed the importance of a more comprehensive performance assessment through probabilistic 
methodologies capable of fully accounting for the effect of the uncertainty of the seismic input. 
Some recent works carried out the performance assessment of structural systems equipped with 
viscous dampers through probabilistic approaches in the framework of performance-based 
earthquake engineering (PBEE). For example, works [20]-[24] focused on probabilistic analysis of 
r.c. buildings retrofitted with linear viscous dampers [20] or steel moment resisting frames with 
linear viscous dampers [21]-[24]. These studies evaluated the seismic demand, in terms of inter-
storey drift ratio as well as other response parameters relevant to the system performance, by 
accounting for the seismic input uncertainties. Other probabilistic studies [25],[26] were aimed at 
developing solution techniques for the optimal use of energy dissipating viscous dampers to 
minimize the life-cycle cost. However, these studies did not provide any insight on the effect of the 
nonlinear damper exponent. Some investigations on this effect were made by [27]-[29] but these 
studies are not in the context of PBEE and they were mainly oriented to develop simplified 
stochastic dynamic analysis procedures to evaluate the system response. 
Since previously discussed deterministic studies on nonlinear dampers have highlighted that the 
velocity exponent   strongly influences the response of viscously damped structures, studies 
analyzing and comparing the probabilistic response of system equipped with both linear and non 
linear viscous dampers are a necessary step to evaluate the effective seismic performance of 
viscously damped structures and to measure the safety level properly. In particular, a deeper insight 
is required on very low velocity exponents, around 0.15-0.20, finding a growing interest in seismic 
applications. A first investigation on this topic has been recently carried out in [30][31] by 
employing a single-degree-of-freedom (SDOF) system. In particular, the study of Tubaldi et al. [30] 
has been developed within the PBEE framework. An extensive parametric analysis encompassing 
all the system characteristic (non-dimensional) parameters has been carried out by considering both 
kinematic and dynamic response quantities (relative displacement, absolute acceleration, damper 
force). The obtained results have shown that the dispersion of each of these response quantities 
induced by the seismic input variability differently changes by varying the parameter  . Moreover, 
results concerning a case study have shown the consequences of this effect on the structural safety, 
expressed in terms of risk of exceeding reference values of the response quantities of interest.  
This paper focuses on the seismic reliability of multi-storey buildings equipped with viscous 
dampers, having in aim the evaluation of the influence of the damper nonlinearity, measured by  , 
on the performance of structural and non-structural components of the system. This performance is 
described in terms of response hazard curves, providing the mean annual frequency of exceedance 
of the response parameters of interest for the performance assessment and obtained by combining 
the information on both seismic hazard and seismic vulnerability. 
The first part of the paper illustrates the probabilistic methodology employed to evaluate the 
influence of the exponent  on the performance, and the underlying assumptions. The second part 
reports the results of the application of the methodology to two multi-storey steel frames with 
different dynamic properties, selected from the SAC Phase II project and widely used in studies on 
seismic response control problems [21],[22],[32]. The performance variations due to changes in the 
damper nonlinearity level are evaluated and highlighted by considering a set of cases involving 



dampers with different exponents  designed for the same deterministic performance objective at a 
reference seismic intensity. The probability distribution and the demand hazard of global response 
parameters (maximum inter-storey drift, maximum absolute acceleration, base shear) and of local 
response parameters (damper strokes and damper forces) are evaluated and discussed in a range of 
variation of annual frequency of exceedance spanning from service to ultimate limit states, 
considering a range of the nonlinear exponent spanning from 0.15 to 1.0. Finally, an assessment of 
the seismic performance obtained by employing the simplified formulas suggested by the seismic 
codes for the damper design is presented.  

PROBABILISTIC SEISMIC PERFORMANCE ASSESSMENT OF FRAMES EQUIPPED WITH 
VISCOUS DAMPERS  

Probabilistic framework for performance assessment 

In the context of PBEE, the assessment of the seismic performance of a structural system can be 
carried out at different levels (e.g., by quantifying the seismic demand, the seismic damage, or the 
direct and indirect losses), and can encompass different sources of uncertainty affecting e.g. the 
earthquake input, the model parameters or the direct and indirect losses estimation [29]. In this 
study, the focus is on the seismic demand on the structural and non-structural components 
considering only the effects of the seismic input uncertainty, which usually provides the major 
effects. However, the same probabilistic framework can be used to include the effects of other 
sources of uncertainties, e.g. those affecting structural and damping parameters, on the performance 
assessment. This usually involves the application of simulation techniques, as shown in 
[25],[29],[33] or in [34]and [35] with reference to different passive seismic protection systems. 
  In PBEE, the ground motion uncertainty is usually described by separating the randomness in the 
input intensity, described by the intensity measure IM (capital letter denotes random variable), from 
the randomness in the record characteristics (record-to-record variability). The IM randomness is 
described by the hazard curve  IMv im , providing the mean annual frequency (MAF) of IM 

exceeding the value im, whereas the record-to-record variability is described by a representative 
ensemble of ground motions conditional on the considered IM level [19][36]. Different choices can 
be made for the IM and for the sets of records, which should be ideally representative of the seismic 
threat at the different IM levels [36][37].  
The seismic demand can be monitored by a number of response parameters (engineering demand 
parameters EDPs) relevant to the performance assessment of the building. As for the case of the IM, 
the EDP variability can be described by the demand hazard curve  EDPv edp , providing the MAF of 

exceedance of a specific level of seismic demand edp and computed as: 

      
0EDP IMEDP IMv edp P edp im dv im


   (1) 

where  EDP IMP edp im  denotes the probability that EDP > edp given IM = im and depends on the 

record-to-record variability of the response.  

The probability  EDP IMP edp im  can be estimated at different IM levels by performing multi-stripe 

analysis (MSA) or incremental dynamic analysis [36]. These analyses consist in performing a series 
of simulations of the response of the structure subjected to a suite of input ground motions scaled to 
a common IM level, for different IM levels. A common assumption introduced in PBEE to simplify 

the assessment of  EDP IMP edp im  and to make possible some analytical calculations, is that the 

distribution of the demand conditional to the IM ,  EDP IMf edp im , is lognormal. This assumption 

is appropriate also for the case of structural systems with nonlinear viscous dampers [30]. The 
lognormal distribution parameters  lnEDP IM im  and  lnEDP IM im , the former denoting the 



lognormal mean, and the latter the lognormal standard deviation (dispersion), can be evaluated from 
the response samples and they vary with the IM level considered [38].  
It should be noted that although the derivation of the curve  EDPv edp  requires a specific IM be 

defined, the final demand hazard should be independent of this choice [19].  
In the following, the term deterministic demand denotes the mean value  imIMEDP  measured for a 

set of seismic inputs with the  same intensity im  [19]. The term "deterministic" underlines that 
there is a one-to-one relationship between the seismic input and the structural demand and 
information about the dispersion of the response is not considered. In this context, the MAF of 
exceedance of the deterministic demand coincides with  IMv im . It is also observed that this 

demand evaluation depends on the particular IM considered [19]. 
  
Methodology for the seismic performance assessment of frames equipped with viscous dampers   

This section illustrates the methodology developed to evaluate the influence of the damper 
nonlinearity on the performance of frames equipped with viscous dampers and to evaluate the 
differences between the seismic demand evaluated by the deterministic and the probabilistic 
approach. The comparison is performed by considering families of case studies designed to achieve 
the same deterministic seismic performance but involving dampers with different values of the 
nonlinear parameter . Each family concerns a specific design scenario, described by the seismic 
hazard and the dynamical properties of the frames. The methodology is articulated into three-stages, 
described as follows. 
 
1. Damper design  
The viscous dampers design is carried out by assigning the damper properties, i.e., the exponent   
and the viscous constants cdi at the i-th storey. A deterministic performance objective is sought 
consistently with modern seismic codes. The design objective corresponds to achieving a target 
mean value of IDRmax , the maximum peak inter-storey drift among the various storeys, for the set 
of records scaled to a reference intensity level refim , with relevant exceedance rate 

 IM ref refv im v . For example, refv  can be taken equal to 0.0021, corresponding to a 10% 

probability of exceedance in 50 years, which is the probability value associated to the ultimate limit 
state (ULS) according to EC8 [3]. The design procedure is applied by considering different levels of 
damper nonlinearity, described by the exponent , and yields a distribution of dampers at storeys 
providing the chosen performance objective. 
 
2. Assessment of the influence of damper nonlinearity on the demand hazard.  
In the second stage of the methodology, multi-stripe analysis [36] is performed to estimate, for the 
different levels of the dampers nonlinearity, the samples that define the statistical distribution of the 
EDPs of interest for the performance assessment.  
In the following study different (global and local) EDPs will be considered: a) the maximum inter-
storey drift along the building height, IDRmax; the maximum floor acceleration along the building 
height, Amax; c) the base shear, Vb; d) the stroke Dd,i of the i-th damper;  e) the force Fd,i. of the i-th 
damper. It is understood that these demand parameters are the maximum values observed during the 
time history. 
The parameters IDRmax and Amax describe the performance of the structural and non-structural 
(displacement-sensitive and acceleration-sensitive) components, Vb describes the forces impaired on 
the foundations, resulting from the sum of the shear of the base columns and of the horizontal force 
of the dampers at the base storey. The other two EDPs are local parameters that permit to monitor 
the damper performance, which is controlled by both the force and the stroke demand. These 



quantities usually vary from damper to damper and have a non uniform distribution along the 
building height. 
The parameters  lnEDP IM im  and  lnEDP IM im  that define the lognormally-distributed demand 

are estimated based on the response samples by using common statistical inference tools as already 
described in Tubaldi et al. [30]. It is noteworthy that in the case of a lognormal distribution, the 
relation between the mean response  EDP IM im , adopted in the deterministic approach, the 

lognormal mean  lnEDP IM im  and lognormal standard deviation  imIMEDP|ln   is: 

      2
ln ln

1
exp

2EDP IM EDP IM EDP IMim im im      
 (2) 

Also the response percentiles can be easily evaluated once the distribution parameters have been 
calculated. 
The response hazard curves for the different EDPs are derived based on Eqn. (1). They can be 
directly used to evaluate the effect of the dampers on the MAF of exceedance of predefined 
response thresholds and also provide the basis for comparing the solutions corresponding to 
different levels of damper nonlinearity. 
 
3. Comparison of probabilistic and deterministic approach for the performance assessment.  
The two approaches for the seismic demand assessment are compared by considering the 
probabilistic demand measure  edp v , obtained as the inverse function of the demand hazard curve 

and representing the demand value with a MAF of exceedance equal to v, and the deterministic 

demand measure  refEDP IM im , representing the mean demand at the reference seismic intensity 

level with MAF of exceedance refv . 

 
The probabilistic and deterministic demand measures change with the damper nonlinearity level 
and their ratio, defined as: 

    
 

,
,

,
EDP

refEDP IM

edp v
R v

im




 
  (3) 

can be interpreted as the multiplication factor to be applied to   ,| refIMEDP im  to obtain the 

demand with a MAF of exceedance equal to v.  
The influence of  on the ratio  ,EDPR v   for the different EDPs of interest is evaluated by 

considering values of v  between 10-2 and 10-5 in order to investigate wide ranges of target seismic 
performance levels. The lower and upper bounds have been chosen based on the target failure rates 
specified in seismic codes for the serviceability and the collapse limit state  [39],[40].  

PROBABILISTIC ANALYSES RESULTS  

Benchmark structures and hazard scenario 

The two analysed structures are a 3 -storey and a 9-storey steel moment-resisting frame buildings 
(Fig. 1) designed as part of the SAC steel project and located in the same site in the Los Angeles 
area. The two buildings significantly differ in their dynamic properties and strength capacity under 
horizontal forces. Their structures were designed in compliance with local code requirements and 
design practices for office building,  by considering the gravity, wind, and seismic load. The 
structural system for both the buildings consists of steel perimeter moment frames and interior 



gravity frames with shear connections. Detailed descriptions of these structures, including 
dimensions and member sizes, are provided in many other works [22].  
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Fig. 1. Building model description and properties: a) three-storey frame, b) nine-storey frame. 

The structural models are developed in Opensees [41] by adopting the general criteria used in 
[22],[32]. The structures are modelled as two-dimensional frames describing half of the symmetric 
buildings in the north–south direction. The inelastic members behaviour has been described by 
using distributed plasticity fiber element models with nonlinear material properties. The nonlinear 
geometrical effects induced by the vertical loads acting on both the interior frames and the modelled 
frame are included in the analysis by employing an elastic P-delta column with high axial stiffness 
and negligible bending stiffness, so that it does not contribute to resist the seismic induced loads. 
The floor vertical loads are assigned to this column at each floor level and a corotational 
formulation is used to capture the nonlinear geometrical effects.  
The damping properties inherent to the behaviour of the steel frames within the elastic range are 
described by using the Rayleigh damping model, whose parameters have been calibrated by 
assuming a 2% damping factor for the first two vibration modes. Table 1 reports the relevant modal 
properties of the 3- and 9-storey structures, i.e., the vibration periods, Ti, and the mass participation 
factors (normalized by the total mass), MPFi, of the first three modes. The observed vibration 
periods are in close agreement with those reported in [22] and in [32]. 

Table 1. Modal properties of the 3- and 9-storey frames.  

Study case mode Ti MPFi 

3-storey 

1 0.999 0.828 

2 0.325 0.137 

3 0.175 0.037 

9-storey 
1 2.225 0.828 

2 0.836 0.109 

3 0.481 0.038 
 
Fig. 2 reports the capacity curves of the frames, obtained through pushover analysis by considering 
a lateral load patter proportional to the first modal shape. These curves are in good agreement with 
the corresponding curves reported in [22]. 
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Fig. 2. Capacity curves of the frames expressed in terms of base shear normalized by the self weight Vb/W and roof drift 

angle (top displacement divided by the height). 

The seismic intensity IM is described by the spectral pseudo-acceleration Sa(T1,2%) of a linear 
elastic SDOF system with 2% damping ratio and fundamental vibration period equal to that of the 
structure T1 [22]. This IM has been chosen because it represents the basis of the current seismic 
hazard maps and building code practice [19]. The choice of this IM is also driven by the aim of this 
study to evaluate the safety levels achieved by employing a "deterministic approach" for the 
dampers design consistent with modern seismic codes [16], which employ a response spectrum to 
define the seismic input. The hazard curves corresponding to the chosen IM, for the three storey and 
the nine storey building frames, are reported in Fig. 3 and are taken from [22]. They are in the form 

  1
0

k
IMv im k im , where k0 = 0.00142 and k1= 3.25 for the 3-storey frame, and k0 = 0.000262 and 

k1 = 2.08 for the 9-storey frame. In Fig. 3, the intensity levels corresponding to a probability of 
exceedance of 2%, 10% and 50% in 50yrs are also highlighted. These are the intensity levels 
considered for the assessment of the frames according to the codes. The case studies will be 

designed by considering the MAF of exceedance   0.0021ref IM refv v im   (probability of 

exceedance of 10% in 50 years), associated to the intensities refim = 0.8866g for the 3-storey frame, 

and refim = 0.3676g for the 9-storey frame (g is the gravity acceleration). 

The record-to-record variability has been described by employing ground motions taken from the 
set of 60 records used in the SAC project, whose characteristics are reported in Barroso [21]. These 
records are characterized by different seismic intensities, frequency content, and duration. For each 
IM level covered in the multi-stripe analysis [36], the 30 ground motions with the closest IM values 
have been selected and scaled to that IM level. This approach, yielding different ground motion 
combinations for the different IM levels considered, permits to avoid excessive scaling of the 
records.  
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Fig. 3. Hazard curve for (a) the three storey and (b) the nine storey building frames. 



The relation between the seismic input and the dynamic properties of the case studies is illustrated 
in Fig. 4, where the pseudo-acceleration response spectra of the 30 records representative of the 
earthquake input at IM = imref are reported together with the mean response spectrum. In the same 
figure, the spectral values at the first three vibration periods are also reported by circles. The 9-
storey case is more flexible than the 3-storey case and it is worth to observe that the ratio between 
the spectral ordinates at higher periods and at the first period of vibration is higher for the 9-storey 
frame than for the 3-storey frame. Thus the latter frame is expected to be more sensitive to the 
higher mode contributions. 
 

 

T [s] 
0 0.5 1 1.5 2 2.5 3 3.5 4 

0 

1 

2 

3 

4 

5 

6 

7 

record spectrum 
mean spectrum 

S a
(T

,2
%

) 
/i

m
re

f [
-]

 

 

 

S a
(T

,2
%

) 
/i

m
re

f [
-]

 

T [s] 
0 0.5 1 1.5 2 2.5 3 3.5 4 

0 

1 

6 

7 

3 

4 

5 

2 

record spectrum 
mean spectrum 

 
3-storey case 9-storey case 

Fig. 4. Pseudo-acceleration response spectra of the records at imref for the three-storey (a) and the nine-storey frame (b). 

 
The set of solutions with added damping have been generated by requiring the same target mean 

value of IDRmax,  refIDR IM im  at IM = refim  for the frames equipped with the dampers 

characterized by different nonlinearity levels. The starting values of  refIDR IM im  for the bare 

frames are 2.80% for the 3-storey case and 2.41% for the 9-storey case. The target values of 

 refIDR IM im  are equal to 1.20% for the 3-storey frame and 1.07% for the 9-storey frame, and 

they have been chosen to provide an additional damping ratio of exactly 30% to the first mode in 
the linear case ( = 1). The corresponding demand reduction is of about 55% for both the 3-storey 
and 9-storey case.  
It is noteworthy that there are different distributions of damper properties along the building height 
that provide the same added damping ratio at the first mode. Therefore, the determination of the 
viscous constants cdi is arbitrary and standard methods as well as more advanced methods based on 
optimization procedures can be used (see [42][43]for an overview of the damping placement 
methods as well as a comparison in terms of performances). Standard methods include the most 
simple distribution characterized by the same damping constant cd at each storey, or distributions 
where the damping constants are proportional to the storey stiffness or shear, this latter usually 
leading to larger dampers at the lower storeys. Differently, advanced methods aim at finding the 
optimal damper distribution by employing different optimisation algorithms (i.e. sequential search 
algorithms, mathematic programming algorithms or genetic algorithms) and by considering 
different performance objectives (e.g. inter-storey drift, absolute acceleration or damper forces). 
Recently, studies on multi-objective optimization [7] or optimization methods accounting for 
different seismicity levels [14] [25] are also developed. In general, the optimal design solution 
changes by changing the optimization method adopted, thus a standard placement methods is 
considered in this paper. Since the differences observed among standard methods are usually not 
very large [42], in this study a uniform distribution is assumed for its simplicity and effectiveness. 
Table 2 reports the set of design solutions corresponding to the different values of  for the two 



frames considered. Fig. 5 shows that these solutions lead, for the different  values considered, to 
mean values of the inter-storey drift demand uniformly distributed in the 3-storey case, and 
decreasing along the building height in the 9-storey case. 
 

Table 2. Damper design parameters for different levels of damper nonlinearity. 

Case study   cdkNs/m Case study   cdkNs/m 

3-storey 

1 10200 

9-storey 

1 35750 

0.6 5150 0.6 15500 

0.3 2800 0.3 9900 

0.15 2300 0.15 8500 
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Fig. 5. Distribution of the inter-storey drift demands for the 3-storey case (a) and the 9-storey case (b).  

 
Probabilistic response and seismic demand hazard curves  

This section analyzes the influence of the damper nonlinearity on the seismic response variability 
and on the seismic demand hazard of the case studies. The variability of the response at different 
intensity levels is described synthetically by the median, 84th and 16th percentiles of the EDPs 
relevant to the performance assessment (Fig. 6a-e for the 3-storey case, Fig. 8a-e for the 9-storey 
case), whereas the influence of the nonlinear parameter   on the seismic demand hazard is 
analyzed by comparing the corresponding demand hazard curves  EDPv edp  (Fig. 6f-j for the 3-

storey case, Fig. 8f-j for the 9-sterey case), providing the MAF of exceedance of each response 
parameter. The reported plots refer to the two extreme values of the damper exponents,  = 0.15 
and  =1. The dotted lines are located at the reference seismic intensity refim  and at the 

corresponding MAF of exceedance ref . 

For what concerns the 3-storey case, it can be observed that the dampers are more effective in 
reducing the system inter-storey drifts in the nonlinear case than in the linear case for seismic 
intensities lower than imref, whereas they control worse these drifts for larger seismic intensities. In 
fact, the median value of IDRmax is lower in the nonlinear case than in the linear case for low IM 
values, and becomes higher for high IM values (Fig. 6a). Moreover, the variance increases with the 
seismic intensity and it is higher in the nonlinear case. Consequently, the MAF of exceedance of the 
inter-storey drift demand is lower in the nonlinear case than in the linear case for low IDRmax values, 
and higher for high IDRmax values (Fig. 6f). The two demand hazard curves intersect at 
approximately the design target IDRmax value, i.e., 1.20%. 



Differently, the median value of the maximum absolute acceleration Amax, as well its variance, is 
higher in the system with nonlinear dampers than in the system with linear dampers at all the 
intensity levels (Fig. 6c). As a consequence, the values of the MAF of exceedance of Amax are 
always higher in the nonlinear case than in the linear case (Fig. 6g). 
Strokes Dd,i and forces Fd,i of the dampers are local parameters exhibiting statistics which usually 
differ from storey to storey and they show a different sensitivity to the seismic input variability 
[44],[45]. In order to compare results coming from different dampers it is necessary to normalize 
their EDPs. In the following the reported values of the strokes and of the forces are normalized 
storey by storey by dividing them by the deterministic demand value at the reference seismic 
intensity. The normalized strokes and forces are denoted as d,i and d,i, respectively. A synthetic 
information is reported by plotting the statistics and the demand hazard curves of the maximum 
(normalized) values observed among the storeys, denoted as d,max and d,max . 
The global trend of the maximum (normalized) stroke is similar to the trend of IDRmax even if the 
two quantities may attain their maxima at different storeys. However, differently from the results 
relevant to IDRmax , the demand hazard curves for d,max in the linear and nonlinear case assume 
very different values in correspondence of the reference MAF of exceedance (ref). On the other 
hand, the maximum normalized damper forces d,max (Fig. 6d) show an opposite trend. In fact,  
since in the non linear case the damper forces increase less and less as the velocity increases, the 
median value of d,max is larger in the nonlinear case than in the linear case for low IM values and 
becomes significantly lower at high IM values. Moreover, the dispersion is low at all the IM levels 
in both the linear and nonlinear case. The combined effect of the small dispersion and of the 
moderate variation of the mean value of d,max results in a force demand in the nonlinear case that 
increases only slightly by reducing the MAF of exceedance, while very larger variations occur in 
the linear case (Fig. 6i). Consequently, the two hazard curves intersect one with the other, and the 
values of d,max are lower in the linear case than in the nonlinear case for high v values, and higher 
for low v values. Similar effects of the damper nonlinearity for seismic intensities higher or lower 
than the one employed to evaluate the design dampers stroke and force have been observed in the 
previous study of the authors [30] with reference to a SDOF system. Analogous results were also 
reported in [14], though this study is based on a different (deterministic) approach and includes only 
two seismicity levels.  
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Fig. 6. Response statistics for the 3-storey frame corresponding to the dampers nonlinearity levels =1 and = 0.15: 

50th, 16th and 84th percentiles vs. IM (a-e), and response hazard curves (f-j) . 

Finally, the median values and dispersions of the base shear Vb in the linear and nonlinear case are 
very similar to each other for all the seismic intensity levels considered (Fig. 6e), despite the 
damper forces show very different trends. As expected, also the base shear hazard curves are almost 
overlapping (Fig. 6j). At this regard it is useful to remind that the base shear Vb results from two, 
non synchronous, contributions due to the frame (base column shear Vs) and the dissipative bracings 
(horizontal components of the base damper forces Vd). In order to investigate separately these two 
contributions, the values of Vd and of Vs are plotted vs. IM in Fig. 7. It can be observed that while 
the median values of Vs are similar in the linear and non linear case, the variance is larger for the 
non linear case, due to the already observed large variance affecting the structure displacements. On 
the other hand, the contribution of the dampers has a very different trend. In particular, in the linear 
case the values of Vd are always lower than the values of Vs, while the value of total base shear is 
lower than the sum of the two contributions since these are not synchronous. Moreover, the 
variance of the dampers contribution is similar to the variance of the frame contribution, thus the 
two system components both contribute to the variance of the total base shear. Differently, in the 
nonlinear case the median values of Vd are higher than the median values of Vs for very low IM 
levels and become significantly lower at high IM levels, since the base damper force cannot 
increase appreciably for vary low values of . In this case, the median value of the total base shear 
is close to the sum of the contributions of the two system components, confirming that the out-of-
phase effect is lost with small  values as already observed in other papers (e.g. [14]). Moreover, as 
already discussed for the maximum normalized damper force, the variance of the damper 



contribution to the base shear is very limited, thus the frame mainly contributes to the variance of 
the total base shear. In conclusion, even if the statistics of the total base shear do not change 
significantly with , the two single contributions of the frame and of the dampers show very 
different characteristics, and this can differently influence the demand hazard and the design of the 
two system components. 
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Fig. 7. Variation with IM of total base shear, frame base shear and dampers base shear for the 3-storey frame in the case 

of linear dampers (a) and of nonlinear dampers (b). 

Fig. 8 collects the results concerning the 9-storey frame, characterized by a seismic hazard and 
modal properties different from those of the 3-storey frame. 
The trends followed by IDRmax are approximately similar to those observed for the 3-storey frame. 
However, in the nonlinear case, the values of the dispersion observed for low (i.e., more probable) 
seismic levels are larger and this expands the range of demand values where the nonlinear MAF of 
exceedance is higher than the linear one. 
The results about the maximum acceleration are similar to those observed for the 3-storey case. In 
fact, the median values of Amax are always higher in the nonlinear case than in the linear case, the 
dispersion are comparable and the MAF of exceedance in the nonlinear case is always higher than 
the corresponding MAF of exceedance in the linear case.  
Also the trends of the maximum normalized damper strokes and forces follow trends similar to 
those observed for the 3-storey frame; however, in the 9-storey frame the stroke demand in the 
nonlinear case is larger than the demand in the linear case for all the spanned values of  . 
Finally, the differences in the base shear demand observed between the linear and nonlinear case are 
more significant for the 9-storey frame with respect to the 3.storey frame. This can be explained by 
observing and comparing the contributions to the base shear from the dampers and from the frame 
(Fig. 9). In fact, compared to the case of the 3-storey frame (Fig. 7), Vd assumes very high values, 
which are even higher than the values of Vs at high IM levels in the linear case. This is the result of 
the high flexibility of the frame and the high influence of the contribution of higher order modes to 
the damper forces [46][47]. Consequently, the total base shear is significantly influenced by the 
damper forces and this also explains why the trend of the hazard curves of the base shear is more 
similar to the trend of the damper forces in the case of  9-storeys frame than 3-storeys frame. 
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Fig. 8. Response statistics for the 9-storey frame corresponding to the dampers nonlinearity levels =1 and = 0.15: 

50th, 16th and 84th percentiles vs. IM (a-e), and response hazard curves (f-j) . 
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and of nonlinear dampers (b). 



Deterministic vs. probabilistic performance assessment at the reference MAF of exceedance 

 
In order to compare and quantify the differences between the deterministic approach and the 
probabilistic approach at the reference condition considered for the design, the demand ratios 

 EDPR v , defined by Eqn. (3), are numerically evaluated for the different response parameters of 

interest at refv v , for both the 3-storey and the 9-storey frame. In this case, the ratios  EDP refR v  

provide a comparison between the demand evaluated through the probabilistic approach for a MAF 
of exceedance refv  ( see  Fig. 6f-j for the 3-storey case, Fig. 8f-j for the 9-sterey case) and the 

demand  refEDP IM im  resulting from the deterministic approach [19]. It is noteworthy that the 

smaller the response dispersion, the closer the ratio  EDP refR v  gets to 1. 

The observed values of  EDP refR v  are reported in Table 3. As a general consideration, the 

combined effect of the trends of the edp  dispersion and of the seismic hazard curve  imIM  

provides values of  EDP refR v  larger than 1. Thus, the actual demand value with an exceedance rate 

of refv  is always larger than the corresponding mean demand value employed in the deterministic 

performance assessment. It is also worth to observe that the values of  EDP refR v  differ significantly 

for the various response parameters and they also change significantly by varying .  
In general, the values observed in the 3-storey case, spanning the range 1.040-1.187, are lower than 
corresponding values observed in the 9-storey case, spanning the range 1.114-1.735. This difference 
is mainly due to the response variability associated to the higher vibration modes, that is more 
notable in the 9-storey case, as previously discussed in commenting Fig.4. 

The analysis of the linear case results ( 1 ) shows that the values of  EDP refR v  relevant to 

dynamic quantities, as the maximum damper forces and the maximum absolute storey accelerations, 
are larger than the values observed for kinematic quantities, as the maximum inter-storey drift and 
damper strokes, coherently with the edp  response dispersions observed in the previous section in 
the neighbourhood of the reference seismic intensity (see Figs.5-7). Intermediate results are 
obtained for the base shear and this is due to the combined effects of the stiffness contribution, 
proportional to the deformation, and the contribution provided by the damper forces. 

The variation of the  EDP refR v  value with   exhibits a trend coherent with that of the response 

variability: moving from the linear case 1  toward the nonlinear case 15.0  the dispersions 

and consequently the  EDP refR v  values increase in the case of the maximum inter-storey drift and 

damper strokes, whereas an opposite situation is observed for the damper forces. A less evident 
decreasing trend is observed for the storey absolute accelerations. The variation in the base shear 
are generally very low, in consequence of the opposite trends of the deformation-dependent 
contribution and of the viscous force-dependent contribution. 
The differences observed between the demand measure obtained through the probabilistic approach 

and the conventional deterministic demand expressed by the mean value  refEDP IM im  are notable 

for the considered case studies (up to 75% for accelerations, 45% for forces and 33% for inter-
storey drifts). It is noteworthy that different results and trends may be observed by changing the 
damper distribution, i.e. by adopting different standard distributions or optimal distributions 
resulting from the application of optimization methods ([7],[14],[25],[42][43]). Nevertheless, the 
results reported in this study are interesting because they show the relevance of the problem and 
suggest the need for further investigations, encompassing different damper distributions as well as a 
wider range of damping levels, structural properties and seismic input characteristics. 



Table 3. Ratios  EDP refR v  for the different EDPs and the 3- and 9-storey frames. 

3-storey frame  9-storey frame 
 0.15 0.3 0.6 1   0.15 0.3 0.6 1 
IDRmax 1.067 1.052 1.051 1.054  IDRmax 1.327 1.289 1.225 1.138 
Amax 1.163 1.187 1.171 1.126  Amax 1.503 1.529 1.735 1.735 
d,max 1.066 1.042 1.040 1.051  d,max 1.275 1.202 1.224 1.197 
d,max 1.047 1.074 1.110 1.129  d,max 1.114 1.208 1.373 1.451 
Vb 1.102 1.100 1.096 1.085  Vb 1.207 1.248 1.293 1.301 
 
Relationship between demand and MAF of exceedance  

This section analyzes the relationships between the MAFs of exceedance and the EDPs, having in 
aim to compare the trends of the different demand parameters and to evaluate the influence of the 
nonlinear damper parameter . Presented results span the range of MAFs from 10-2 to 10-5 which 
are relevant for the service and ultimate limit states [40]. The values of the parameter  considered 
are: 0.15, 0.30, 0.60, and 1.00. 
Fig. 10 shows the variation with v of the ratio  EDPR v  for the 3-storey case (Fig. 10a-e), and for 

the 9-storey case (Fig. 10f-j).  The values of  EDPR v   increase by increasing v, as expected, but 

with different trends for the various response parameters and values of  considered in this study . 
The demand concerning the displacements, as the maximum inter-storey drifts and damper strokes, 
generally show larger increments by increasing the MAF of exceedance when the nonlinear 
parameter  decreases while an opposite trend can be observed for the dynamic quantities, as the 
absolute accelerations at storeys, the damper forces and the base shear. The 3-storey case and the 9-
storey case qualitatively show the same trends, even if the variations concerning the damper forces 
and the base shear are enhanced in the 9-storey case. 
It is interesting to analyze the shape of the relationships between the demand and the natural 
logarithm of the MAF of exceedance. This relationship is essentially linear for the damper forces, 
for all the values of the parameter  and for both the frames. Its slope strongly depends on the 
nonlinear parameter . Differently, the law is always less than linearly proportional for the base 
shear whereas it is more than linearly proportional for the displacements, damper strokes and 
accelerations. Also in this case, the slopes depend on the nonlinear behaviour of the dampers. 
These results can be used to check approximate formulas used in practical design and an example is 
discussed in the next section by considering FEMA provisions. 
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Fig. 10. Variation with the target MAF level v of  EDPR v for the 3-storey case (a-e) and for the 9-storey case (f-j). 

Damper statistics and  reliability levels provided by simplified formulas  

In this section, the MAF of exceedance of the demand provided by current code prescriptions for 
the damper design is evaluated by employing the hazard curves and the relationships between 
demand and MAFs of exceedance discussed in the previous sections. 
According to ASCE 41-06 [2], velocity-dependent dissipation devices shall be capable of sustaining 
displacements equal to 200% of the maximum displacement calculated for earthquakes intensities 
with a 2% probability of being exceeded in 50 years. Velocity-dependent devices should also 
sustain the forces associated to velocities calculated for the same earthquake intensity and amplified 
by the same factor. The 200% factor reduces to 130% if at least four devices are provided at a given 
storey.  



The aim of this type of provisions is to extrapolate a conventional value of the demand with a MAF 
of exceedance suitable for a reliability assessment by starting from the seismic demand obtained 
from the structural analysis. This should permit to perform a reliability assessment by a direct 
comparison between the conventional values of the demand and the capacity [40]. 
Table 4 and Table 5 report and compare the results of this assessment for the case of linear dampers 
( 00.1 ) and of nonlinear dampers with 15.0 . They report the code design values of the 
damper stroke dD  and forces dF  at the various storeys of the 3-storey and 9-storey frame, obtained 

by amplifying strokes and damper velocities (calculated for earthquakes intensities with a 2% 
probability of being exceeded in 50 years) with a factor of 130% (Table 4) and of 200% (Table 5). 
Tables also report the MAFs of exceedance of the design (amplified) values deduced from the 
hazard curves and the ratios Dr  and Fr  between these MAFs of exceedance and the MAFs of 

exceedance corresponding to the reference (not amplified) values of strokes 0D  and forces 0F . For 

each case also the maximum values of the ratios Dr  and Fr  are reported. The more the 

approximated approach based on amplification factors is effective, the more the ratio values of Dr  

and Fr  are similar. 

With reference to the linear behaviour, it can be observed that ratios Dr  and Fr  of the 3-storey case 
are roughly uniform throughout the storeys for both the strokes and the forces but the values 
observed for the force are significantly lower than the values observed for the strokes. The MAFs of 
exceedance of the magnified strokes dD  are equal or lower than 42% of the MAFs of exceedance 

of the reference value 0D  while the values concerning the damper forces reduce to 23% or more. 

In the case of the 9-storey frame with linear dampers, the MAFs of exceedance show a similar trend 
but the values measured for the forces are less regularly distributed along the building height and 
their maximum is higher. 
By passing from the linear case to the nonlinear case, the design values of strokes and forces at 
storeys increase and the MAFs of exceedance decrease as expected, but some trends can be 
observed for what concerns the variations in the Dr  and Fr  ratios. Generally the values of the ratios 
at storeys and their maxima increase and the difference is notably larger for the damper forces. The 
distribution storey by storey is still roughly uniform, with some exceptions for the small values of 
stroke at upper levels of the 9-storey case. 
The discussed trends are confirmed in the  Table 5, regarding the stronger extrapolation inherent the 
factor 200%. In this case the MAFs of exceedance are notably lower but they are still roughly 
uniform for the linear dampers. The differences between strokes and forces are enhanced and the 
MAFs of exceedance reduction is more and more large for the forces. Also the differences between 
the linear and nonlinear case are confirmed and enhanced. The maximum values of Dr  are around 

doubled and larger differences occur for the force ratio Fr . 
In general, the observed variations in the MAFs of exceedance are not uniform. By passing from the 
linear case to the nonlinear case, the simplified approach may provide a different estimation of the 
reliability regarding the stroke and the forces. A refinement of magnification factors for practical 
design is desirable, as already implicitly recognized in [2] ("The increases in force and displacement 
capacity listed in this standard are based on the judgment of the authors."), but it obviously requires a 
deeper investigation and a larger set of case studies. 
 
 
 
 
 
 
 



Table 4. Code design values and MAF of exceedance of the stroke and force of the dampers. Amplification factor 1.30. 

Storey
D d               

[m]

v D  

[1/yrs]

r D                                  

[-]

F d               

[kN]

v F  

[1/yrs]

r F                                  

[-]

D d               

[m]

v D  

[1/yrs]

r D                                  

[-]

F d               

[kN]

v F  

[1/yrs]

r F                                  

[-]
1 0.092 1.76E-04 0.42 5109 1.13E-04 0.23 0.114 1.83E-04 0.51 2110 3.11E-04 0.27
2 0.104 1.70E-04 0.38 5628 1.01E-04 0.19 0.144 1.89E-04 0.49 2187 5.84E-04 0.35
3 0.073 1.63E-04 0.37 3936 9.80E-05 0.16 0.118 2.30E-04 0.52 2184 6.26E-04 0.48

max 0.42 0.23 0.52 0.48

Storey
D d               

[m]

v D  

[1/yrs]

r D                                  

[-]

F d               

[kN]

v F  

[1/yrs]

r F                                  

[-]

D d               

[m]

v D  

[1/yrs]

r D                                  

[-]

F d               

[kN]

v F  

[1/yrs]

r F                                  

[-]
1 0.131 1.55E-04 0.42 17623 2.36E-04 0.31 0.156 2.15E-04 0.48 8043 7.04E-04 0.34
2 0.113 1.62E-04 0.45 13675 1.53E-04 0.29 0.131 2.29E-04 0.53 7710 7.51E-04 0.50
3 0.106 1.57E-04 0.44 12331 1.11E-04 0.25 0.114 2.39E-04 0.54 7519 8.85E-04 0.47
4 0.096 1.52E-04 0.42 11662 9.91E-05 0.22 0.093 2.47E-04 0.52 7397 9.89E-04 0.56
5 0.078 1.53E-04 0.40 10408 1.01E-04 0.21 0.061 2.38E-04 0.46 7035 8.26E-04 0.52
6 0.063 1.54E-04 0.38 9223 1.23E-04 0.23 0.040 2.04E-04 0.35 6722 5.45E-04 0.59
7 0.053 1.62E-04 0.36 8280 1.64E-04 0.25 0.029 1.65E-04 0.14 6725 1.58E-04 0.52
8 0.043 1.73E-04 0.36 6979 1.53E-04 0.25 0.026 3.81E-04 0.09 6817 2.73E-05 0.50
9 0.027 1.96E-04 0.40 4854 4.33E-05 0.19 0.024 5.20E-04 0.06 6864 1.90E-10 0.35

max 0.45 0.31 0.54 0.59

 = 1.00  = 0.15

 = 1.00  = 0.15

 
 
 

Table 5. Code design values and MAF of exceedance of the stroke and force of the dampers. Amplification factor 2.00. 

Storey
D d               

[m]

v D    

[1/yrs]

r D                                  

[-]

F d               

[kN]

v F    

[1/yrs]

r F                                  

[-]

D d               

[m]

v D    

[1/yrs]

r D                                  

[-]

F d               

[kN]

v F    

[1/yrs]

r F                                  

[-]
1 0.142 2.84E-05 0.068 7861 2.88E-06 0.006 0.175 4.81E-05 0.134 2251 1.70E-05 0.015
2 0.160 2.02E-05 0.045 8659 6.79E-07 0.001 0.222 4.48E-05 0.117 2333 6.56E-05 0.039
3 0.113 1.90E-05 0.043 6055 3.97E-07 0.001 0.182 6.13E-05 0.138 2330 1.40E-04 0.108

max 0.068 0.006 0.138 0.108

Storey
D d               

[m]

v D    

[1/yrs]

r D                                  

[-]

F d               

[kN]

v F    

[1/yrs]

r F                                  

[-]

D d               

[m]

v D    

[1/yrs]

r D                                  

[-]

F d               

[kN]

v F    

[1/yrs]

r F                                  

[-]
1 0.201 3.04E-05 0.081 27113 1.92E-05 0.025 0.239 6.01E-05 0.133 8579 1.22E-04 0.060
2 0.174 3.30E-05 0.091 21038 7.62E-06 0.015 0.202 6.67E-05 0.156 8225 1.74E-04 0.115
3 0.163 3.15E-05 0.088 18971 2.63E-06 0.006 0.176 6.98E-05 0.159 8023 2.36E-04 0.125
4 0.148 2.95E-05 0.081 17941 1.90E-06 0.004 0.143 7.08E-05 0.150 7889 3.05E-04 0.172
5 0.120 2.86E-05 0.074 16013 2.36E-06 0.005 0.093 4.88E-05 0.094 7507 2.46E-04 0.155
6 0.097 2.80E-05 0.068 14189 4.12E-06 0.008 0.061 2.73E-05 0.047 7170 1.61E-04 0.174
7 0.081 2.79E-05 0.062 12738 7.92E-06 0.012 0.045 6.34E-06 0.005 7173 3.38E-05 0.111
8 0.066 3.27E-05 0.068 10737 8.29E-06 0.014 0.040 3.12E-06 0.001 7268 4.02E-06 0.073
9 0.042 4.42E-05 0.091 7467 1.70E-06 0.007 0.037 2.56E-06 0.000 7318 2.48E-12 0.005

max 0.091 0.025 0.159 0.174

 = 1.00  = 0.15

 = 1.00  = 0.15

 
 

CONCLUSIONS 

This paper analyzes the influence of damper nonlinearity level on the probabilistic seismic 
performance of building frames equipped with viscous dampers subjected to an uncertain seismic 
input represented by a set of ground motions scaled to different intensity levels. In particular, a 
probabilistic methodology is developed to evaluate how the viscous damper exponent  affects the 
statistics of different response parameters and the seismic performance as measured in terms of 



demand hazard curves. A comparison between the deterministic and probabilistic estimates of the 
seismic demand is carried out by evaluating the performance of families of case studies consisting 
of frames equipped with dampers with different values of the exponent   designed to ensure the 
same deterministic performance objective. In particular, a 3-storey and a 9-storey steel building 
frames are considered as case studies. These two frames are characterized by different dynamic 
properties and seismic hazard scenarios, described by the seismic intensity refim  and the relevant 

MAF of exceedance ref . Global (maximum inter-storey drift, maximum absolute acceleration, base 

shear) and local (strokes and forces at dampers) demand parameters are reported and discussed. 
The main conclusions of the analysis of the case studies are: 
- The response statistics (edp vs im) are notably influenced by the nonlinear exponent . This 
influence is different for the various parameters considered and also changes with the seismic 
intensity level. These differences in the response reflect on the demand hazard ( vs edp) and quite 
similar qualitative trends have been observed for the case studies and seismic scenarios considered. 
- The probabilistic seismic demand corresponding to the reference value of MAF of exceedance  

refv  is higher than the deterministic design demand for all the observed parameters. The difference 

between the two values reflects the dispersion of the response due to record-to-record variability, 
which is different for the different EDPs and  levels considered. 
- The demands corresponding to target values of the MAF of exceedance different from refv  also 

show trends depending strongly on . The relationship between the damper force demand and the 
logarithm of the MAF of exceedance is essentially linear for both the case studies and for all the 
values of the nonlinear parameters . This relationship is less than linearly proportional for the base 
shear and it is more than linearly proportional for the inter-storey drifts, damper strokes and 
absolute accelerations. 
- In the final part of the paper, the analysis results are employed to evaluate the reliability of 
simplified approaches usually adopted in codes of practice for the damper design. These approaches 
generally magnify the deterministic results coming from the structural analysis to estimate values of 
the demand to be used for the reliability assessment. Application of the probabilistic results to the 
case studies showed some limits of this approach and, in particular, showed that not uniform 
differences in the MAF of exceedance arise by passing from the linear case to the nonlinear case.  
Magnification factors for the demand estimates should consider the nonlinear parameter   and 
further investigations encompassing different damper distributions, seismic input properties and 
added damping levels are necessary to provide more reliable approximated formulas. 
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