
02 February 2025

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

Local scour around structures and the phenomenology of turbulence / Manes, Costantino; Brocchini,
Maurizio. - In: JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - STAMPA. - 779:(2015), pp. 309-324.
[10.1017/jfm.2015.389]

Original

Local scour around structures and the phenomenology of turbulence

Publisher:

Published
DOI:10.1017/jfm.2015.389

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/227977 since: 2022-05-23T17:11:12Z

This is the peer reviewd version of the followng article:



Under consideration for publication in J. Fluid Mech. 1

Local scour around structures and the
phenomenology of turbulence

Costantino Manes1†, and Maurizio Brocchini2

1Faculty of Engineering and the Environment, University of Southampton, Southampton,
SO171BJ, UK
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The scaling of the scour depth of equilibrium at the base of a solid cylinder immersed
within an erodible granular bed and impinged by a turbulent shear flow is investigated
here, for the first time, by means of the phenomenological theory of turbulence. The
proposed theory allows the derivation of a predictive formula that (i) includes all the rel-
evant non-dimensional parameters controlling the process; and (ii) contrary to commonly-
employed empirical formulae, is free from scale issues. Theoretical predictions agree very
well with experimental data, shed light on unresolved issues on the physics of the prob-
lem and clarify the effects of various dimensionless parameters controlling the scouring
process.
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1. Introduction

In this paper we investigate the local scour around cylindrical elements inserted within
a granular bed and piercing the free-surface of open channel shear flows (figure 1). Quan-
tifying the maximum depth of the scour hole generated at these conditions is relevant
for a wide range of engineering applications, including the design and risk assessment
of hydraulic structures such as bridge piers, off-shore platforms and wind turbines. The
problem can be stated as follows: for a given structure (e.g. shape and orientation with
respect to the flow), some arbitrarily-chosen extreme flow conditions and sediment size,
what is the maximum depth of the scour hole forming around the foundations? The
enormous amount of research carried out to give an answer to this question led to the
development of many predictive formulae derived through empirical approaches, which
traditionally rely on dimensional analysis and data fitting to find functional relations
between non-dimensional groups (Melville & Coleman 2000; Ettema et al. 2011). This
approach has two main shortcomings: firstly, data are obtained mainly from labora-
tory experiments, which suffer from scale issues and, in turn, hide the real shape of
functional relations between non-dimensional groups at field scales; secondly, even when
reliable large-scale experiments are available, the empirical approach does not provide a
theoretical framework to interpret the experimental data and to understand the physics
underlying such functional relations. As a result, currently available formulae are affected
by large uncertainties and the physics of local scour phenomena occurring around struc-
tures is far from being understood. We argue that, although the empirical approach has
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provided important guidelines to quantify local scour for practical applications, future
advances in this research area may benefit from the development of methodologies that
root more on physical rather than empirical grounds. Towards this end we propose
a new formula to predict scour depths, which is derived by merging theoret-
ical aspects (i.e. the phenomenological theory of turbulence) with empirical
observations. The proposed approach is scale-independent and clarifies the
effects of various dimensionless groups on local scour processes.We focus on the
simplified case of a cylindrical structure with circular cross section, because it represents
the traditional template to study scour processes around structures and because it finds
important applications in civil and off-shore engineering.
The paper is organized as follows: section 2 provides the theoretical derivation of scour

predictive formulae; in section 3 experimental data taken from the literature are used
to validate theoretical predictions; section 4 is devoted to the final discussion and the
conclusions.

2. Theory

2.1. General aspects

When an open channel flow impinges upon a cylindrical rigid structure, turbulence is
generated in the form of a horseshoe vortex, a wake vortex and a surface roller (figure
1). The horseshoe vortex is the main factor for sediment entrainment since it causes a
significant increase in the shear stress around the base of the structure. The wake vortex
contributes to lift the entrained sediment and to displace it outside the scour hole. The
surface roller (i.e. a recirculating mass of turbulent water) develops in proximity of the
free-surface due to the formation of a bow wave. The influence of the surface roller on
scouring is significant only at shallow flow conditions, namely when the flow depth is
smaller than or comparable with the pier width (Melville & Coleman 2000; Ettema et
al. 2011).
Local scouring can occur in so-called clear-water or live-bed conditions depending on

whether, upstream of the cylinder, sediment transport occurs or not, respectively. In both
cases local scour is triggered by the horseshoe vortex at the base of the cylinder, provided
that local shear stresses exceed the critical shear stress of the sediment (Ettema et al.
2011). As the scour hole deepens, the erosive strength of the horseshoe vortex decreases
until an equilibrium condition is reached. In the clear-water case such an equilibrium is
reached when the shear stress at the base of the scour-hole approaches the critical shear
stress associated with the sediment lying on the river bed. In live-bed conditions instead,
equilibrium conditions are dictated by a balance between ingoing and outgoing sediment
fluxes (Melville 1984). In both cases the vertical distance between the undisturbed bed
level and the deepest point within the scour hole is commonly defined as the equilibrium

scour depth (i.e. ys).
Figure 2 illustrates the typical evolution in time of the scour depth observed in live-

bed and clear-water laboratory experiments. In live-bed conditions, equilibrium is reached
very rapidly and ys oscillates due to the passage of bed-forms. In clear-water conditions
the concept of equilibrium is not clear and still a matter of controversy (Lança et al.
2013). Some authors support the concept that equilibrium is reached in an arbitrarily-
defined finite time (Melville & Chiew 1999; Kothyari et al 2007), whereas some others
argue that equilibrium can be reached only asymptotically and suggest that ys should be
estimated through extrapolation of scour curves (as those reported in figure 2) at time
equal to infinity (Sheppard et al. 2004; Lança et al. 2013). Lança et al. (2013) reports
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Figure 1. Description-sketch of eddies and scour geometry induced by an open channel shear
flow impinging on a cylindrical element inserted within an erodible bed.

S
co
u
r 
d
e
p
th

Time

Figure 2. Conceptual description of the scour evolution in time for clear-water (dashed line)
and live-bed (solid line) conditions.

that for identical experimental conditions ys can vary by 10−20% depending on how it is
defined, therefore care must be taken when comparing results from different experiments.
We come back to this issue in section 3.

2.2. Clear-water conditions

In clear-water conditions, provided that the ratio between the depth-averaged velocity
in the undisturbed channel (i.e. V1) and the sediment critical velocity is high enough
(say 0.5 6 V1/Vc 6 1, where Vc is the sediment critical velocity, which depends on both
sediment diameter and flow depth), the horseshoe vortex erodes the sediment at the base
of the structure until the shear stress generated within the scour hole approaches the
critical shear stress value (Ettema et al. 2011) and equilibrium conditions are reached.
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The point of maximum scour depth is normally located at the base of the scour hole in
close proximity with the cylinder, either at its upstream face or at its flanks (Ettema
et al. 2011). After careful examination of the results from experiments and numerical
simulations presented in the literature we argue that the local slope of the sediment
bed in proximity of the point of maximum depth is consistently zero (Unger & Hager
2007; Kirkil et al. 2008; Ettema et al. 2011). Therefore, at this location, the critical
shear stress of the sediment (i.e. τc) is presumably independent of local-slope (i.e. grav-
itational) effects and, assuming that the flow within the scour hole is in the fully-rough
regime (i.e. turbulence around the pier is fully-developed and momentum transfer at the
sediment-water interface is weakly influenced by viscosity), equilibrium conditions can
be mathematically expressed as (Shields 1936)

τ 6 τc ∼ (ρs − ρ) gd, (2.1)

where, τ is the shear stress at the point where the maximum scour depth occurs, ρs is the
density of the sediment material, ρ is the density of the fluid, g the gravity acceleration,
d is the characteristic sediment diameter and the symbol ’∼’ means scales as.
We now aim to derive a simple analytical formula that links the scour depth of equi-

librium with easily measurable properties of the impinging flow, the sediment-bed and
the geometry of the cylindrical structure. The following derivation is inspired by the
work of Gioia & Bombardelli (2005) and Bombardelli & Gioia (2006) who have used
an approach based on the phenomenology of fully-developed turbulence (see e.g. Frisch
1995) to investigate local scouring induced by turbulent jets.
Following Frisch (1995), the phenomenology of fully-developed turbulence

can be considered as a shorthand system that can be used to recover Kol-
mogorov’s scaling laws (Kolmogorov 1991), that were originally derived in a
much more systematic and (perhaps) rigorous way. In the present paper we
make use of Kolomgorov’s theory of turbulence to derive an expression for
τ , which results from the interaction between large- and small-scale eddies
impinging the scour-hole surface.
We start by recalling two important paradigms of turbulence phenomenology: (i) for

fully-developed turbulent flows, the Turbulent Kinetic Energy (TKE) per unit mass is
injected in the flow at scales commensurate with the largest eddies and is independent
of viscosity; (ii) TKE, introduced at a rate ǫ, cascades from large- to small-scales at the
same rate until eddies of sufficiently small-scale dissipate it into internal energy still at
the same rate ǫ. Following Kolmogorov’s theory (Kolmogorov 1991) the length scale at

which the energy cascade begins to be influenced by viscosity is η =
(

ν3/ǫ
)1/4

, where
η is the Kolomogorov length scale. Since TKE production occurs at large scales and is
independent of viscosity, dimensional arguments suggest that ǫ ∼ V 3/S, where V and S
are the characteristic velocity and length scale of large eddies. At scales l that are much
smaller than S but also much larger than η (i.e. scales contained within the so-called
inertial range), the energy cascade occurs inviscidly and ǫ ∼ V 3/S ∼ u3

l /l, where ul is
the characteristic velocity of eddies of size l. This implies that

ul ∼ V

(

l

S

)1/3

, (2.2)

which is a well-known result of Kolmogorov’s theory of turbulence (Frisch 1995).
We can now go back to the turbulent flow generated within the scour hole forming

at the base of a cylindrical structure. Under fully-developed turbulence conditions and
neglecting viscous components, the shear stress τ acting on the scour surface formed
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Figure 3. Schematic representation of the interaction between large-scale eddies and eddies
scaling with the sediment diameter d. V is the characteristic velocity of large-scale eddies (i.e.
eddies scaling with S) and ud is the characteristics velocity of near-bed eddies (i.e. eddies scaling
with the sediment diameter d); u′ and w′ are velocity fluctuations along and normal to the main
flow direction respectively; η is the Kolmogorov length scale that quantifies the thickness of the
viscous sub-layer (Gioia & Chakraborty 2006) as discussed in section 3.

by sediment grains of diameter d, is the Reynolds stress τ = ρu′w′, where u′ and w′

are defined as the velocity fluctuations parallel and normal to the mean flow direction,
respectively and the over-bar identifies turbulence-averaging (Figure 3).
Provided that d belongs to the inertial range of scales (i.e. η ≪ d ≪ S), Gioia &

Bombardelli (2005) argue that eddies of size much larger than d can hardly contribute
to w′ because they are too large to exchange momentum in the fluid space between two
successive roughness elements. In contrast, eddies of size smaller than d do fit within
this space but are associated with lower characteristic velocities (i.e. recall Kolmogorov’s

scaling ul ∼ V
(

l
S

)1/3
). This implies that, w′ is dominated by eddies of size d. Conversely,

u′ is influenced by the whole spectrum of turbulence length scales and therefore u′ is

dominated by V . Therefore, the shear stress scales as τ ∼ ρudV , where ud ∼ V
(

d
S

)1/3

and hence,

τ ∼ ρV 2

(

d

S

)1/3

. (2.3)

Strictly speaking, Kolmogorov’s scaling (as applied in deriving the expression above)
is valid if small-scale turbulence is homogeneous and isotropic. Turbulent flows within
scour holes and in proximity of the sediment-water interface may not display these prop-
erties because of the significant strain rates of the mean flow imposed by the presence
of the scour hole and the cylinder themselves. Nonetheless, the literature suggests that
Kolmogorov’s predictions still hold for non-homogeneous and anisotropic flows (Knight
& Sirovich 1990; Moser 1993). Moreover, Saddoughi & Veeravalli (1994) and Saddoughi
(1997) show that for wall-bounded flows the energy spectra display Kolmogorov scal-
ing across a range of wavenumbers at which local isotropy is not strictly valid and this
was observed in both equilibrium (i.e. canonical turbulent boundary layers) and non-
equilibrium flows (i.e. flows characterized by complex mean strain rates as in the case of
flows around a cylinder). Finally, Gioia and co-workers show that applying Kolmogorov’s
scaling to describe turbulent flows at close proximity to rough and smooth boundaries
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(these include near-wall flows in pipes and channels where turbulence is neither homoge-
neous nor isotropic) allows the recovery of many important empirical relations pertaining
to classical hydraulics (Gioia & Bombardelli 2002; Gioia & Chakraborty 2006). It is,
therefore, suggested that the validity of the phenomenological theory of turbulence (in
the sense of Kolmogorov) to describe small-scale turbulence within a scour hole is, at
least, a plausible hypothesis.
It is now assumed that the characteristic length scale of the energetic eddies forming

within the scour hole (i.e. presumably the characteristic length scale of the horseshoe
vortex) approximates the depth of the scour hole itself. This means that at equilibrium
conditions it is S ∼ ys, where ys is the scour depth of equilibrium. This is a reasonable
assumption because at equilibrium conditions, the horseshoe vortex is notoriously fully
buried within the scour hole, as reported by Kirkil et al. (2008) and Unger & Hager
(2007).
Computing τ requires finding a scaling formula for V , which is derived following ener-

getic principles. We recall that ǫ scales as ǫ ∼ V 3/S. However, ǫ can also be estimated as
the power associated with large-scale eddies (i.e. P ) divided by the mass of the fluid con-
tained within their characteristic volume, i.e. ǫ = P/M . P can be estimated as the work
of a drag force F acting on the cylinder against the mean flow and, hence, as P = FV1,
where, V1 can be taken as the depth-averaged velocity of the approaching flow. The
drag force can, thus, be computed as 0.5ρCdaSV

2

1 , where Cd is a drag coefficient, a is
the cylinder diameter, aS is the frontal area of the cylinder exposed to scouring. The
power of the localised turbulent eddies is estimated from the drag force acting on the
exposed portion of the cylinder because, presumably, wake eddies forming above it do
not contribute to the scour process.
From dimensional considerations, the mass of the characteristic large-scale eddy can

be computed as M ∼ ρS3. This implies that

ǫ =
P

M
∼ CdaV

3
1

S2
∼ V 3

S
(2.4)

and hence

V ∼ V1

(

Cda

S

)1/3

. (2.5)

Combining equations (2.3) and (2.5) leads to:

τ ∼ ρV 2

1

(

Cda

S

)2/3 (
d

S

)1/3

. (2.6)

When the scour process reaches equilibrium the sediment stops moving and the shear
stress approaches the value of the critical shear stress, (i.e. incipient motion condi-
tions, τ ≈ τc) and, hence, after some algebra:

S ∼ ys ∼
(

V 2

1

g

)(

ρ

ρs − ρ

)

(Cd)
2/3

(a

d

)2/3

(2.7)

or, alternatively

ysg

V 2
1

∼
(

ρ

ρs − ρ

)

(Cd)
2/3

(a

d

)2/3

. (2.8)

Equation (2.8) shows that the scour depth of equilibrium normalized with the kinetic
head of the undisturbed approach flow, depends on the specific gravity of the sediment
(i.e. ρ/ (ρs − ρ)), a drag coefficient (i.e. Cd) and on the so-called relative coarseness (i.e.
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a/d). According to the literature (Ranga Raju et al. 1983; Qi, et al. 2014), the drag
coefficient of cylinders impinged by open-channel flows depends on the cylinder shape,
the blockage ratio (i.e. a/B, where B is the channel width), the ratio between flow
depth and cylinder diameter (i.e. y1/a), the Froude number of the impinging flow (i.e.
Fr = V1/

√
gy1) and on the cylinder Reynolds number (i.e. Re = V1a/ν, where ν is the

kinematic fluid viscosity). The dependence of Cd on Re is probably weak because of the
turbulent nature of most open-channel flows both in the laboratory and in the field.

2.3. Live-bed conditions

For the clear-water case, the equilibrium condition (i.e. the incipient motion con-
dition) τ ≈ τc was used to derive a predictive formula for the maximum scour depth.
For the live-bed case the equilibrium condition is different, as it involves a balance be-
tween the time-averaged flux of sediment transported within the scour hole, i.e. Qin and
the time-averaged flux of sediment removed, i.e. Qout (Melville 1984)(averages must be
taken over time-scales much larger than those associated with the passage of bed forms).
Therefore, the equilibrium condition for live-bed scour is Qin = Qout. Unfortunately,
this condition cannot be further developed to derive a formula ys because of the diffi-
culties in theoretically predicting sediment fluxes that occur within the scour hole (i.e.
Qout), which is characterized by a complex geometry and flow. However, the following
arguments can be used to find a solution to the problem.
We start by pointing out that most of Qin must be in the form of bed-load because

most of the sediment fluxes entering within the scour hole must occur next to the bed.
Furthermore, most of (if not all) the laboratory experiments on live-bed scour that are
available from the literature were carried out with bed-load only and, hence, we restrict
our analysis to this transport regime. From the theory of sediment transport the di-
mensionless bed-load sediment discharge per unit channel width (i.e. q∗s ) is commonly
estimated through power laws of the type:

q∗s = α (τ∗ − τ∗c )
n (2.9)

where q∗s = qs/
(

d
√

dg ρs−ρ
ρ

)

, qs is the dimensional sediment volumetric discharge per

unit channel width, τ∗ is the so-called Shields parameter defined as the ratio between the
shear stress in the undisturbed bed and the critical shear stress of sediment τc; τ

∗

c , α and
n are constants (see e.g. Yang 1996). Since shear stresses and depth-averaged velocities in

the undisturbed channel can be related through a friction factor (i.e. τ =
ρV 2

1
f

8
, where f

is the Darcy-Weisbach friction factor), q∗s can also be estimated as a function of (V1/Vc)
2,

where Vc is the critical velocity for the sediment and V1/Vc is commonly referred to as
the flow intensity parameter (Yang 1996).
The hypotheses and the arguments underpinning the derivation of the shear stress for-

mula for the clear-water case (see equation 2.6) are applicable also for live-bed conditions.
It is now easy to show that, at equilibrium, the scour depth function Se defined as

Se =
ysg

V 2
1

/

[(

ρ

ρs − ρ

)

(Cd)
2/3

(a

d

)2/3
]

, (2.10)

represents the ratio between the critical shear stress (i.e. τc ∼ (ρs − ρ)gd) and the shear
stress acting at the point of maximum scour as obtained from equation (2.6) using S = ys.
Equation (2.10) is, essentially, the inverse of a Shields parameter, which in clear-water
conditions must be constant (see equation 2.8). In live-bed conditions, Se cannot be
constant because the outgoing sediment flux has to be sustained to match the ingoing
flux and, therefore, Se must depend on the sediment discharge in the undisturbed flow.
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Since Se is, effectively, the inverse of a local Shields parameter, its value at equilibrium
should depend on qs rather than on Qin, which is an integral quantity that includes
contributions of sediment fluxes from flow regions away from the point of maximum
scour that do not contribute to the local sediment mass balance. Since qs is, essentially,
dictated by V1/Vc (or τ∗, see equation 2.9), we assume that in live-bed conditions the
dimensionless scour depth is related to V1/Vc by the following equation

Se = φ {V1/Vc} , (2.11)

where the functional relation φ must be found experimentally. We have chosen to use
V1/Vc instead of τ∗ because, for validation purposes, V1/Vc is readily available from the
literature reporting live-bed scour experiments, unlike τ∗.

3. Validation

3.1. Clear-water conditions

The validation of equation (2.8) is carried out by using experimental data for the case
of cylindrical structures with circular cross section, uniform sediment beds and steady,
turbulent shear flows. Data of this kind are largely available from the literature.
The linear dependence of (ysg) /V

2

1
on ρ/ (ρs − ρ) cannot be tested because this pa-

rameter is practically constant in most of the available experiments. Similar difficulties
apply to testing the scaling derived for Cd because, in general, Cd values are contained
within a range that is too small to test the occurrence of a power-law with confidence.
Instead, the proposed scaling for the relative roughness a/d can be extensively validated
from experimental data. Towards this end it is important to further clarify under which
conditions equation (2.8) is applicable. Equation (2.8) was derived under the assumption
that the sediment diameter is within the range of length scales pertaining to the inertial
range, i.e. η ≪ d ≪ S. At equilibrium, this condition becomes η ≪ d ≪ ys. In order
to find predictive conditions at which equation (2.8) can be applied it is necessary to
replace ys, which is not known a-priori, with a known parameter that is of the same
order of magnitude as ys. It is well known from the literature that ys scales well with a,
more precisely a < ys < 3a (see e.g. Lee & Sturm 2009). Assuming ys ≈ a, the TKE
production can be estimated from equation (2.4) as ǫ ∼

(

CdV
3
)

/a and, hence, the order
of magnitude of the bulk Kolmogorov length scale can be estimated as

η ∼
(

ν3

ǫ

)1/4

∼
(

ν3a

CdV 3

1

)1/4

, (3.1)

therefore, equation (2.8) is valid if

(

ν3a

CdV 3
1

)1/4

≪ d ≪ a, (3.2)

or, analogously, if

1 ≪ a

d
≪ C

1/4
d Re3/4. (3.3)

Due to the small exponent of the drag coefficient it is fair to assume that C
1/4
d ≈ 1 and,

therefore, the range of validity of the proposed theory can be expressed as:

1 ≪ a

d
≪ Re3/4. (3.4)

Since it was assumed that S ∼ ys ≈ a, a/d can now be physically interpreted as the
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Source a/B y1/a Fra a/d Fr Re× 104

Ettema et al. (2006) 0.02-0.13 2.5-15.6 0.30-0.58 61-387 0.15 3-19
Lança et al. (2013) 0.02-0.91 0.5-5.0 0.10-0.47 58-4155 0.07-0.38 1-43
Ettema (1980) 0.02-0.15 0.2-21.0 0.17-2.53 4-1000 0.07-1.00 1-26
Sheppard et al. (2004) 0.01-0.15 0.19-11.5 0.10-0.39 136-414 0.07-0.38 3.2-69

V1 [m/s] a [m] d [mm] y1 [m]

Ettema et al. (2006) 0.46 0.06-0.4 1.00 1.00
Lança et al. (2013) 0.27-0.47 0.05-0.91 0.22-0.86 0.05-1.81
Ettema (1980) 0.18-1.34 0.02-0.24 0.24-7.8 0.02-0.60
Sheppard et al. (2004) 0.29-0.70 0.11-0.91 0.22-2.9 0.17-1.90

Table 1. Range of experimental data pertaining to clear-water scour experiments extracted
from the literature; a is the cylinder diameter; V1 is the depth-averaged velocity; B is the channel
width; y1 is the flow depth; Fra = V1/

√
ga is the cylinder Froude number; Fr = V1/

√
gy1is the

Froude number of the flow; d is the sediment diameter; Re = V1a/ν is the cylinder Reynolds
number; the majority of the experiments reported by Lança et al. (2013) was carried out using
V1 = 0.3m/s and d = 0.86mm, with only 4 experiments varying these parameters within the
range reported in this table; all the experiments were carried out using uniform quartz sand of
density ρs = 2650Kg/m3.

ratio between characteristic scales associated with energy containing eddies (i.e. a) and
roughness elements (i.e. d) within the scour hole.
The validity of equation (2.8) is now tested against the laboratory data provided by

Ettema (1980), Sheppard et al. (2004), Ettema et al. (2006) and Lança et al. (2013).
This data set is also utilised to further constrain the limits of validity of the proposed
theory as expressed by equation (3.4).
Table 1 provides a summary of the relevant experimental conditions associated with

each referenced source. The definition of equilibrium scour depth is, in general, arbitrary
and not consistent over these four studies: in the experiments by Ettema (1980) and
Ettema et al. (2006) equilibrium conditions were considered to be reached when no

appreciable change of the maximum depth was observed over a minimum period of four

hours. Instead Sheppard et al. (2004) and Lança et al. (2013) applied the concept of
equilibrium as an asymptotic condition as discussed in section 2.1. In order to avoid
fictitious scatter of data, the validity of the proposed scaling for a/d is tested by plotting
ysg/V

2

1
vs a/d for each data set individually (figure 4).

Before commenting on figure 4 we further discuss the uncertainties associated with
the assumptions underpinning the proposed theory in relation with the experimental
data reported in table 1. Equation (2.8) was derived under the assumption of fully-rough
conditions and, hence, it was possible to assume that, at equilibrium, the critical shear
stress scaled as τc ∼ (ρs − ρ) gd and the shear stress τ had only a turbulent component
(see equation 2.3). Fully-rough conditions are typical of flows over gravel beds or coarse
sands (Shields 1936; Buffington & Montgomery 1997). However, sediment diameters
reported in table 1 mostly pertain to sand beds for which the transitionally-rough regime
is more likely to occur at equilibrium conditions. In principle, for such a regime, the
proposed scaling for both τc and τ does not hold because, both shear stresses should also
depend upon viscosity. Ignoring viscosity effects, therefore, introduces some uncertainty,
which is discussed in the following two points: (i) according to the pioneering work
of Shields on sediment entrainment, viscosity effects in transitionally-rough flows can
account for variations of τc/ (ρs − ρ) gd (i.e. the Shields parameter) contained within a



10 Costantino Manes & Maurizio Brochini

range of ±33% (Shields 1936; Buffington & Montgomery 1997) around an intermediate
value; (ii) similarly, according to the seminal work of Nikuradse on turbulent flows over
granular walls, within the transitionally-rough regime and for a given relative roughness,
viscosity effects can account for variations of friction factors (and, hence, of bed shear
stress τ) contained within a range of±10% (Yang & Joseph 2009) around an intermediate
value.

Some uncertainty is also introduced by the drag coefficient Cd. In order to isolate the
effects of a/d on ysg/V

2

1
we discarded all the experimental data associated with flow

conditions that could include significant variations in Cd. In particular, all the exper-
iments characterized by y1/a < 1.4 were discarded because for these cases the surface
roller interacts with the near-wall horseshoe vortex and, therefore, it is likely to alter
significantly the drag coefficient of the cylinder and, consequently, the equilibrium scour
depth (Melville & Coleman 2000). All the remaining experiments were characterized by
flow conditions with blockage ratio and Froude numbers which, according to Ranga Raju
et al. (1983), induce variations of bulk drag coefficients Cd of ±15%. This means that

assuming a constant Cd in equation (2.8), implies introducing a relative error on C
2/3
d of

±10%.

Combining the relative errors of Cd, τc and τ in equation (2.8), implies that ysg/V
2

1

can be estimated with a maximum relative error of about ±36%, with τc providing the
largest contribution to it.

Figure 4 illustrates ysg/V
2
1 as function of a/d in log-log plots for all data sets. The figure

shows that, for each data set, a/d varies over at least one order of magnitude and hence
the proposed power-law scaling for a/d (dashed line in figure 4) can be validated with
confidence. Overall, figure 4 shows that the majority of the experimental data pertaining
to intermediate values of a/d agree well with the proposed theory.

The experimental data are now used to better constrain the lower and higher bounds of
the intermediate range of a/d values identified by equation (3.4) which, in turn, identifies
the limits of validity of the proposed theory. The lower bound can be found from the
data by Ettema (1980) (figure 4c), which shows that the 2/3 scaling holds for a/d > 20.
Below this threshold the theory over-predicts the normalized scour depth. In fact, when
a/d < 20, there is poor scale separation between roughness elements and large eddies
of the flow. Therefore, d becomes comparable to the energy-containing eddies and, with
respect to the case of d belonging to the inertial range, the flow resistance offered by the
roughness elements is enhanced. In other words, the effective roughness of the scour hole
increases and therefore ys decreases. The phenomenon of enhanced effective roughness of
rough-walled flows with poor scale separation is well known in hydraulics (see e.g. Chow
1988). For example, when the scale separation between flow depth and roughness (i.e.
y1/d) is not large enough, the Manning’s coefficients of rough beds underlying turbulent
open-channel flows increase with decreasing y1/d (see e.g. Ferguson 2010). The flow
depth y1 and the cylinder diameter a quantify the scale of energy-containing eddies in
open-channel flows and flows around cylinders, respectively. Therefore, for both flow types
the ratios y1/d and a/d have the same physical meaning. Interestingly and consistently
with the results reported herein, Ferguson (2010) shows that Manning’s coefficient begin
to be influenced by the relative submergence for y1/d < 20.

The data from Lança et al. (2013) and Sheppard et al. (2004) help to identify the upper
bound in equation (3.4), which is Reynolds-number-dependent and, therefore, cannot be
visually found from figure 4. The data points not respecting the proposed 2/3 scaling
are associated with experimental conditions for which the sediment diameter was less
than 5 times the Kolmogorov length scale (i.e. for d/η < 5), as estimated with equation
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Figure 4. Dimensionless scour depths vs relative coarseness; (a) data from Ettema et al. (2006);
(b) data from Lança et al. (2013); (c) data from Ettema (1980); (d) data from Sheppard et al.
(2004). For panels (a), (b), (c) and (d) white squares and black circles refer to values of a/d that
are within and outside the limits imposed by equation (3.5), respectively. In these panels the
solid lines represent a 2/3 power law that best fits white squares, whereas dashed lines represent
the associated ±36% error lines. In panel (e) all the experimental points contained within the
limits imposed by equation (3.5) are plotted together to provide a general overview. Vertical
triangles, left-pointing triangles, circles and stars refer to data from, Ettema et al. (2006), Lança
et al. (2013), Ettema (1980) and Sheppard et al. (2004), respectively. In panel (e) the solid line
represents a power law with a 2/3 exponent.
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Figure 5. Comparison between scaling laws pertaining to ys vs a (left panel) and ysg/V
2

1 vs a/d
(right panel). The dashed lines represent a power law with a 2/3 exponent. Data from Ettema
(1980).

(3.1). In wall-turbulence, η is closely related to the viscous length scale of the flow (see
figure 3 and Gioia & Chakraborty (2006)) and, therefore, if d/η < 5 sediment grains are
likely to be of size comparable with the viscous sub-layer thickness. This, in turn, means
that the shear stress at the water-sediment interface becomes predominantly viscous so
that the eddies of size d no longer dominate the turbulent momentum transfer (figure 3)
and, hence, the proposed theory no longer holds. Furthermore, figure 4 shows that, all
the data points for which d/η < 5 are associated with values of ysg/V

2

1
that are smaller

than those predicted by the 2/3 power law. This is to be expected because the viscous
sub-layer shelters the sediment grains from the turbulent fluctuations of the flow above
and, therefore, reduces their erosive power.
The upper bound of equation (3.4) can, therefore, be identified from the condition

d/η > 5, which, in terms of bulk Reynolds number and relative coarseness, corresponds
to a/d < 0.2Re3/4. It is concluded that equation (2.8) is valid under the following ap-
proximate conditions:

20 <
a

d
< 0.2Re3/4. (3.5)

The data of Ettema et al. (2006), which are all contained within this range, agree very
well with our proposed theory.
Excluding the data points outside the limits imposed by (3.5) leads to a striking

agreement between theory and experiments (see figure 4). Furthermore, the ±36% error
bounds predicted by the uncertainty analysis presented previously, correspond to the
level of scatter appearing in figure 4(a),(b),(c), and (d).
One might argue that the good agreement between theory and experimental data as

reported above, could be the result of a fortuitous correlation between ys and a. This is
because, as already discussed and well reported in the literature, these two parameters
are strongly correlated in local scour experiments. To remove this suspicion and further
substantiate the validity of the proposed approach we show that ys and a display a scaling
relation but the associated exponent is different from 2/3. Towards this end we first note
that the experiments by Ettema et al. (2006) and Lança et al. (2013) were carried out
with a weak variation in d and V1 while the cylinder diameter a was varied extensively
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Source a/B y1/a Fra a/d Fr Re× 104

Chiew (1984) 0.07-0.12 3.3-7.6 0.35-2.80 10-186 0.17-1.25 0.8-8.3
Sheppard & Miller (2006) 0.14 1.3-3.2 0.14-1.77 181-563 0.08-1.26 2.6-33

V1 [m/s] a [m] d [mm] y1 [m] Vc [m/s]

Chiew (1984) 0.22-1.84 0.03-0.05 0.24-3.20 0.17-0.34 0.27-0.73
Sheppard & Miller (2006) 0.17-0.21 0.15 0.27-0.84 0.3-0.43 0.25-0.4

Table 2. Range of experimental data pertaining to live-bed scour experiments extracted from
the literature; Vc is the critical velocity for sediment; all the other symbols are as in table 1.

(see table 1). This means that plotting ysg/V
2

1
vs a/d taken from these data sets is,

essentially, the same as plotting ys vs a and, therefore, they cannot be used to validate
our approach. Instead the data sets by Sheppard et al. (2004) and Ettema (1980) were
obtained by extensively varying V1, d and a. However, only Ettema (1980) provides
enough points within the limits imposed by equation (3.5) to perform a robust statistical
analysis (see figure 4c and d).

Figure 5 shows the data from Ettema (1980) plotted as ys vs a (left panel) and ysg/V
2
1

vs a/d (right panel) together with a line corresponding to a power law with exponent
equal to 2/3. For both panels a best-fit analysis was carried out by minimising least
square errors over both the x− and y−coordinate. The best fit of ys vs a resulted in
exponents equal to 0.94 (minimising errors over the y−coordinate) and 1.1 (minimising
errors over the x−coordinate), which suggests a linear rather than power-law relation
between the two variables. Instead, the best fit of ysg/V

2

1 vs a/d resulted in exponents
equal to 0.67 (minimising errors over the y−coordinate) and 0.81 (minimising errors
over the x−coordinate), which are reasonably close to the theoretically-predicted value
of 2/3 ≈ 0.67. We, therefore, conclude that the proposed scaling is not the result of a
fortuitous correlation between ys and a.

3.2. Live-bed conditions

In live-bed conditions the proposed theory essentially suggests that if scour depth func-
tion Se is plotted against the flow intensity parameter V1/Vc, experimental data should
collapse around a curve identified by a functional relation φ (see equation 2.11). In order
to substaniate these hypothesis, experimental data were extracted from Chiew (1984)
and Sheppard & Miller (2006) for a total of 167 data points. As in the clear-water case,
these experiments were carried out with circular cylinders and uniform quartz sand. Only
very few data points with y1/a < 1.4 were filtered out. Table 2 provides a summary of
the relevant experimental data, which include a wide range of hydraulic conditions.

Since in live-bed conditions the maximum scour depths oscillate in time due to the
passage of bed-forms, here ys is taken as the time-averaged value of maximum scour
depths as reported by the authors of the referenced papers. Contrary to the clear-water
case, in live-bed conditions there is no ambiguity about the definition of ys and, therefore,
the proposed theory can be tested against all data sets at once and not for each data set
individually.

Figure 6 shows that the agreement between theory and experiments is striking. The
experimental data, with exception of a few points, collpase nicely onto a power law
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Figure 6. Se versus the flow intensity parameter V1/Vc. Experimental data are taken from
Chiew (1984) and Sheppard & Miller (2006). White squares and black circles refer to values
of a/d that are within and outside the limits imposed by equation (3.5), respectively. The solid
line is the best fit to the white square data (see equation 3.6).

function of the type:

φ = β

(

V1

Vc

)θ

, (3.6)

with β = 0.47 and θ = −1.89. Interestingly, the points that do not collapse on equation
3.6 are associated with a/d < 20. This suggests that, although equation 3.5 was obtained
from the analysis of experimental data pertaining to clear-water flows, it seems to be ap-
plicable to live-bed flows as well. Furthermore, consistently with the clear-water case, for
these experimental points, the proposed theory over-predicts scour depths. As discussed
earlier, this is an effect associated with an increase in flow resistance due to the poor
scale separation between sediment diameter and energy-containing eddies.

4. Discussion and conclusion

We now discuss how the proposed theory relates with the dimensional arguments com-
monly applied in the literature pertaining to local scour around bridge piers. Various
authors argue that for the case of circular cylinders, uniform sediment and steady condi-
tions (i.e. the conditions investigated herein) the scour depth of equilibrium normalized
as ys/a, depends on the following set of non-dimensional groups (see e.g. Ettema et al.
1998; Ettema et al. 2011):

ys
a

= Φ1

{

a

B
;
y1
a
;Fra;

a

d
;
V1

Vc
;Re;

ρs
ρ

}

, (4.1)

where, Fra = V1/
√
ga is the cylinder Froude number. All the non-dimensional groups

listed above stem naturally from the application of dimensional arguments and of the
Buckingam-Π theorem, except for V1/Vc, which is somewhat artificially included (Simarro
et al. 2007) because it has the important physical meaning of identifying the cross-over
between clear-water (i.e. 0.5 6 V1/Vc 6 1) and live-bed conditions (i.e. V1/Vc > 1).
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Dividing both sides of equation (2.8) by a, gives

ys
a

∼ (Fra)
2

(

ρ

ρs − ρ

)

(Cd)
2/3

(a

d

)2/3

(4.2)

which is valid for clear-water conditions.
For live-bed conditions the formula for the scour depth of equilibrium is

Se =
ysg

V 2
1

/

[(

ρ

ρs − ρ

)

(Cd)
2/3

(a

d

)2/3
]

= φ {V1/Vc} . (4.3)

Dividing equation (4.3) by a gives,

ys
a

∼ φ

{

V1

Vc

}

(Fra)
2

(

ρ

ρs − ρ

)

(Cd)
2/3

(a

d

)2/3

(4.4)

where φ is given by equation (3.6).
It is now evident that the proposed approach allows the derivation of two equations that

naturally contain all the non-dimensional groups identified by dimensional arguments and
clarify their effects from a physical point of view. All such groups appear explicitly in
equations (4.2) and (4.4) with the exception of a/B, y1/a and Re. However, the effects
of the first two are lumped into the drag coefficient Cd (which, according to the relevant
literature may also be dependent on Fr and, weakly, on Re) and, hence, are associated
with momentum transfer mechanisms occurring between the fluid and the cylinder. With
the exception of very few studies (Ettema et al. 2006; Simarro et al. 2007) the effects of Re
are commonly neglected in the literature providing formulas for local scour prediction
(see e.g. Lee & Sturm 2009; Ettema et al. 1998). We have shown that such effects
are, instead, rather important since Re, in conjunction with the relative coarseness a/d,
dictates the nature of momentum transfer mechanisms at the sediment-water interface
and, ultimately, influences the magnitude of the equilibrium scour depth. In particular,
it was shown that if 20 < a/d < 0.2Re3/4, then ysg/V

2

1
∼ (a/d)2/3. Such a clean scaling

is lost when a/d > 0.2Re3/4 and a/d < 20, due to viscous sheltering and increased flow
resistance effects, respectively.
Again, the main objective of the present paper is not to propose yet an-

other formula for direct applications in engineering. The aim is, rather, to
propose a novel approach that combines theoretical arguments with consid-
erations taken from empirical evidence, to develop a better understanding of
the physics of local scouring around structures and therefore, to provide new
avenues for the development of general predictive models, which root more
on physical rather than empirical grounds.
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